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The purpose of this paper is to propose a stochastic extension of the Chain-Ladder model in a Dirichlet random 

environment to calculate the provesions for disaster payement. We study Dirichlet processes centered around the 

distribution of continuous-time stochastic processes such as a Brownian motion or a continuous time Markov 

chain. We then consider the problem of parameter estimation for a Markov-switched geometric Brownian 

motion (GBM) model. We assume that the prior distribution of the unobserved Markov chain driving by the 

drift and volatility parameters of the GBM is a Dirichlet process. We propose an estimation method based on 

Gibbs sampling. 
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I. Introduction  
The calculation of the provisions for disaster 

payments is intended to allow the integral payment of 

the commitments to the policy-holders and the 

recipients of the contract. The provisions measure the 

commitments that the insurer still has to honor. 

Nevertheless, this countable concept requires a 

subjacent probabilistic model, since it allows one to 

define the ultimate claim, taking into account the 

disasters not yet declared but which have occurred, 

the disasters not sufficiently funded. Reserves are 

given by evaluating the provisions for each contract, 

IBNR (sinister not yet declared) and IBNER (sinister 

not sufficiently funded). Traditional methods of 

provisioning (by triangulation) rest on the assumption 

that the data are homogeneous and in sufficient 

quantity to ensure a certain stability and a certain 

credibility. The purpose of this paper is to propose a 

stochastic extension of the Chain-Ladder model in a 

Dirichlet random environment, which seems to us to 

be closer to reality than the existing methods of 

Schnieper,R [32]; Mack,T [24]; H.Liu and R.Verrall 

[31]; Verrall, R. J. and England, P. D.[37]. We study 

the estimation of claim reserves in non-life 

reinsurance using Drichlet processus. 

In a famous paper, Ferguson [15] introduced the 

Dirichlet process (DP) with the parameter  , a non-

negative finite measure on a measurable space V , as 

a random probability measure P  on V  whose 

finite-dimensional distributions are Dirichlet 

distributions, P  being centered around the 

probability measure )(/= V  where the 

positive number )(V  expresses a confidence 

degree on  . 

There is a large literature on many 

interesting theoretical properties of the DP, see e.g. 

Ferguson [15], [16], Blackwell and MacQueen [2], 

Antoniak [1], Kingman [21], Sethuraman [33], 

Pitman and Yor [27], etc. It is also well-known that 

the Dirichlet distribution and the DP are extensively 

used in various applications, in the setting of 

nonparametric Bayesian statistics, see e.g. Ishwaran 

and Zarepour [19], Ishwaran and James [18], [20], 

Blei, Ng and Jordan [4], Dahl [7] etc. In all these 

applications, the authors deal with a probability 

measure   defined on a finite-dimensional space 

and it seems that the idea of using an infinite-

dimensional space, such as a functional space, first 

appeared in MacEachern (2000) [25] and Faires [14]. 

In the present paper we develop this idea in two 

directions. In the section below, we take H= , 

the distribution of a continuous time Markov chain 

on a finite set of states. We then propose a new 

hierarchical model: a stochastic differential equation 

(SDE) in random environment with a Dirichlet prior 

on the path space of the chain, the states of the chain 

representing the environment. Our estimation 

method, presented in Section 6, is a generalization to 

continuous time of the classification method of 

Ishwaran - Zarepour [19] and Ishwaran - James [18] 

for estimating normal mixtures with a Dirichlet prior, 

the new problem appearing here being that we 

observe just one single path with dependent data. 

Actually, in our approach, the states of the chain are 

considered as classes and the classification procedure 

is performed along this single path. This method, 

which hinges on Gibbs sampling, requires some 

posterior distribution computations that are presented 

below. In Section 7, the algorithm is applied to a real 

dataset coming from the B.E.S.T.R.É company. 
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Models in which parameters move between 

a fixed number of regimes with switching controlled 

by an unobserved stochastic process, are very popular 

in a great variety of domains (Finance, Biology, 

Meteorology, Networks, etc.). This is notably due to 

the fact that this additional flexibility allows the 

model to account for random regime changes in the 

environment. In this paper we consider the estimation 

problem for a model described by a stochastic 

differential equation (SDE) with Markov regime-

switching (MRS), i.e., with parameters controlled by 

a finite state continuous-time Markov chain (CTMC). 

Such a model was used, for example, in Deshpande 

and Ghosh (2008) to price options in a regime 

switching market. In such a setting, the parameter 

estimation problem poses a real challenge, mainly 

due to the fact that the paths of the CTMC are 

unobserved. A standard approach consists in using 

the celebrated EM algorithm (Dempster, Laird, 

Rubin, 1977) as proposed for example in Hamilton 

(1990). Elliott, Malcolm and Tsoi (2003) study this 

problem using a filtering approach. 

In the present paper, our estimation is 

Bayesian, the aim being to find a pair (parameters, 

CTMC path) with likelihood as large as possible. 

approach. We refer the reader to Schnatter (2006) for 

a wider discussion on Markov switching models and 

the comparative advantages of the Bayesian 

approach. Standard priors are placed on the 

parameters space but, as the CTMC paths are 

unobserved, a large number of paths are drawn from 

a Dirichlet process placed as a prior on the path space 

of the CTMC. The complete model then appears as a 

Hierarchical Dirichlet Model (HDM), as in Ishwaran, 

James and Sun (2000) and Ishwaran and James 

(2002). The estimation procedure for the model 

considered in this paper requires some rather 

nontrivial computations of posterior distributions due 

to the temporal level induced by the specific SDE and 

the CTMC. Using the well-known stick-breaking 

approximation, each set of iterations selects the pair 

with largest likelihood and then the Dirichlet process 

is updated in order to look for other paths which can 

further improve the likelihood. 

The considered SDE is that of a geometric 

Brownian motion, a popular model for asset prices in 

mathematical finance which depends on two 

parameters, namely the drift and volatility. It is 

considered in the extended MRS setting so that the 

CTMC transitions correspond to regime changes in 

the market. 

The rest of the paper is structured as follows. In 

Section 2 we present the stock price SDE with MRS 

and the complete HDM. Section 3 is devoted to the 

posterior computations. The estimation algorithm is 

described in Section 4. Numerical results are 

presented in Section 5 for one simulated data and on 

a data from the Indian market. We conclude with a 

summary in the last Section. 

 

II. Bayesian Regime Switching 

Model 
Our model is specified in a mathematical finance 

setting but it can be extended in a similar way to 

various contexts. 

The following notations will be adopted: 

n  will denote the number of observed data and 

also the length of an observed path, 

M  will denote the number of states of the 

Markov chain, 

The state space of the Markov chain will be 

denoted by }1:{= MiiS  , 

N  will denote the number of simulated paths, 

Given a path of the CTMC, m  will denote the 

number of distinct states in that path. 

 

2.1  Hypotheses and description of the model 

We suppose that the available data have a 

triangular form indexed by the year of accident, i , 

and development time, t . Given a triangle, on T 

years, the goal is to consider models using a 

minimum of parameters, in order to envisage the best 

possible amounts of payments of future disasters. We 

note the evolution of the amounts of payments of the 

cumulated real disasters obtained by 

 }11,;1,2....,=;{  iTtTiC i

t . 

i

tC  indicate the evolution of the cumulated 

real disasters indexed by the year of accident, i , and 

the time of development, t . We suppose that the 

increase in the disasters obtained )( 1

i

t

i

t CC   is the 

sum of the disasters not sufficiently funded )( i

tD , 

and of the not declared yet claims )( i

tN . We write 

the following relations between C , N  and D . 

[.[1,,1,= 1  tniNDCC i

t

i

t

i

t

i

t

                                                                    (1) 

 We indicate by 1}|,{=  stiND i

t

i

t

i

sH  all 

the variables in the triangles D  and N  observed 

until the moment s . 

To simulate the future claims, it is supposed 

that the not sufficiently funded claims [[1,)( t

i

tD , 

the stochastic differential equation of diffusion and 

the not yet incurred claims [[1,)( t

i

tN  are governed 

by the stochastic differential equation of Black and 

Scholes with jump. This assumption on the 

probability density function of 
i

tN  ensures positivity 
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and for 
i

tD  ensures the membership R , contrary to 

what is proposed by H.Liu and R.Verrall HLRV .  

Conditionally with 
i

TH , we simulate the distribution 

of 
i

tN  as solution of the following stochastic 

differential equation: 

  

),),,(),,((= t

i

t

i

tt

ii

tt

ii

t

i

t ddBNXtdtNXtNdN P  
 (2) 

  N^i_T-i+1=x, 

where tB  is a standard Brownian motion on R , tP  is the Poisson process of intensity  , tX  is a 

Markov process at continuous time, RRNR  :i , RRNR  :i  verifying  

    <|),,(|    <|),,(| 2 dtNXtanddtNXt i

tt

ii

tt

i   

and 
i  is a positive constant. 

Conditionally with 
i

TH , we suppose that the evolution of 
i

tD  is governed by the following diffusion:  

 ,),,,(),,,(= t

i

t

i

tt

ii

t

i

tt

ii

t dBNDXtdtNDXtdD    (3) 

 ,=1 yD i

iT   

where tB  is a standard Brownian motion on R , tX  is a Markov process at continuous time, 

RRRNR  :i  and RRRNR  :i  such that  <|),,,(| dtNDXt i

t

i

tt

i  

and  <|),,,(| t

i

t

i

tt

i dBNDXt . The process )( tX  is assumed to be a continuous time Markov 

process taking values in the set }.1:{= MiiS   The transition probabilities of this chain are denoted by 

,ijp  Sji ,  and the transition rate matrix is SjiijqQ ,0 )(=  with  

 andjiifpq ijiiji ,=0,>   

 

 .,,= Sjiqq ij

ij

ii 


 

For any state ,,2,1,= Mi   consider priors i  and i  defined as follows  

 ),(|  N:
ind

i  (4) 

 0,>),(0, AAN:  (5) 

 ),( 21  
ind

i :  (6) 

 where ),( 21  denotes a Gamma distribution with shape parameter 1  and scale parameter .2  

Let us define the log-returns, )/(log== 11  ttttt NNZZY  for the equation (13) and 

1=  ttt DDY  for the second equation (14), .,1,2,= nt   

Given a path }.0,{= nsXX s   Let )(tT j  be the time spent by the path X  in state j  in the 

time interval ].1,[ tt   Define  

 );()(:=)();()(:=)( 2

1=

2

1=

tTjttTjt j

M

j

j

M

j

   (7) 

  

 ).()(:=)(
1=

tTjt j

M

j

   (8) 
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 ).()(:=)();()(:=)( 2

1=

2

1=

tTjttTjt j

M

j

j

M

j

   (9) 

 Then, conditional on the path X , the solutions of the equations (13) and (14) are respectively given by :   

    • the solution of the first equation (13) is  

 

s
sts

t

ss

t

t

ecm

ds
s

sddBsexpYcmY

P
P

P



 

 







)(12.5

})
2

)(
)(())(({=1

<0

2

00
0

 (10) 

  

 ,,2,1,= nt   

and,  

    • tY  are i.i.d. ),( tt N , nt ,2,1,=   for the second equation (14).  

 
 

2.2  Markov Regime Switching Model with Dirichlet prior 

 To make our model more flexible we complete it now by placing a Dirichlet prior )( HD  with precision 

parameter 0>  and mean H  (see Ferguson, 1973) on the path space of the CTMC )( tX . The probability 

measue H  is the distribution of a CTMC and initially H  is defined by taking as initial distribution the 

uniform distribution on the states, that is  

 ),1/,,(1/= MM   

as transition matrix P   

 jiMPij 1),1/(=  

and as rates  

 .,1,=0,>= Mii   

Thus the Markov chain under H  will spend an exponentially distributed time with mean 1/  in any state i  

and then jump to state ij   with probability 1).1/( M  

A selection of a Markov chain path from the above Dirichlet prior can be generated as follows. 

Generate a large number, say N , of paths }0:{=)( nsxX i

s

i  , ,,2,1,= Ni   from H . The parameter 

  will be chosen to be small in order to get a large variety of paths. Next generate a probability vector 

),1,=,( Nipi   from a stick-breaking scheme with parameter   (see Sethuramane, 1994). Then draw a 

path of the Markov chain from the distribution  

 .=
1=

i
Xi

N

i

pp   (11) 

 So we have just replaced the Dirichlet process )( HD  by p , this approximation is justified by Sethuramane 

result. Finally the prior for   is a Gamma distribution:  

 ).,( 21  :  (12) 

 Our model is summarized by the following Dirichlet hierarchical model after choosing NQ,,  and drawing 

NXX ,,1   from H :  

 ),( 21  :  

 ),()( NSBpi :  

 
i

Xi

N

i

pp 
1=

=  

 0,>),(0, AAN:  

 ),(|  N:
ind

i  
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 ),( 21  
ind

i :  

 pX t :)(  

  

 ),),,(),,((=| t

i

t

i

tt

ii

tt

ii

t

i

t ddBNXtdtNXtNXdN P  
 (13) 

 ,=1 xD i

iT   and  

 ,),,,(),,,(=| t

i

t

i

tt

ii

t

i

tt

ii

t dBNDXtdtNDXtXdD    (14) 

  

 .=1 yD i

iT   

 

III. Estimation procedures 

 Roughly speaking, once NQ,,  chosen, N  being large, and paths NXX ,,1   simulated from 

H , a first estimation procedure of the above model parameters given the observations is doned by using a 

blocked Gibbs sampling technique. This technique requires the posterior conditional distribution of each 

parameter given the other parameters. Drawing an initial value of   and then a value of p , a path X  is 

drawn among NXX ,,1   w.r.t. p  and the parameters updated. This path and the parameters provide a 

likelihood. The aim the first procedure consists in selecting the pair (path, parameters) with maximal likelihood 

after a long run. 

This first procedure is repeated with the same NQ,,  but with other simulated paths NXX ,,1   

in order to improve the likelihood. 

Once a pair (path, parameters) with maximal likelihood is chosen,   and Q  are re-estimated from this 

path in a standard way and the first procedure is repeated. 

Let us now proceed to the detailed computations. 

We denote by   and  , the current values of the vectors ),,,( 21 n   and ),,,( 21 n  , 

respectively. Let Y  be the vector of observed data ).,,( 1 nYY   Given the current path )0,(= nsxX s   

of the Markov chain, let ),,(= **

1

*

mxxX   be the distinct values in .X  

 

3.1  Modifying the observed data set 

  In order to obtain the conditional distribution of the parameters, we first need to extract the change in 

the log-returns between the jump times of the Markov chain. Let Jtttt <<<<=0 210   be the times at 

which the path X  changes state. Define the log-returns between the jump times, ),/(log=
1k

t
k

tk SSW  

.,1,2,= Jk   To obtain realizations of the kW  from the observed Y  process, we need to simulate Gaussian 

random variables conditioned on their sums. 

Consider any },{0,1, nt   for which the chain changes state atleast once in the time interval 

].1,[ tt   So for some kp,  we have 11 <<<1<   pkpkkk tttttt  . Let )/(log= 1

1

t
k

tt SSV  

and )/(log=2

pk
ttt SSV


. Then,  

 .= 2

1=

1

tik

p

i

tt VWVY    (15) 

 Suppose that the chain X  is in state ij  in the time interval ),[ 1 ikik tt  , 1.,0,1,= pi   Set 

1),(=0  tts k  1=   ikiki tts , ,,1,2,= pi   and .=1 pkp tts    Let 
i

i
jj sm =  and ,= i

i
jj sv   

1.,0,1,= pi   Recall that ))(),(( ttYt N: , where )(),( tt   are as defined in (20). It is easy to see 

that the joint conditional density of ),,,( 1

1

pkkt WWV    given yYt =  will be  
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1

1

0=

10
2

1
(exp=),,,(






pi

pi
p

i

p
vv

vv
Cuuuf   (16) 

  

 ),
)(

2

1

11























pi

piip

vv

myvmv
 (17) 

 where C  is a constant that depends on y  and the parameters. Thus, one can simulate the variables 

pkkkt WWWV  ,,,, 1

1   from independent Gaussian distributions and then obtain 
2

tV  using (15). 

Using the above procedure, we can obtain a realization for all kW  for which ],1,[],[ 1 tttt kk   for 

some },{0,1, nt  . Now for any k  for which there is a 0,q  such that 

1,<<<1<<1 1   qttqttttt kk   we can obtain kW  using the relation  

 .= 1

1

1=

2

  qtit

q

i

tk VYVW  (18) 

 Note that the W  values depend on the path X  and the parameter values ,  and hence are to be computed 

in each iteration of the Gibbs sampling procedure which we describe next. 

 

IV. Markov regime switching with Dirichlet prior 

 In this section, we take H= , the distribution of a continuous time Markov chain on a finite set of 

states, and we propose a new hierarchical model that is specified, in non-life reinsurance. Of course, this can be 

similarly used in many other cases. We consider the Black-Scholes with jump SDE in random environment with 

a Dirichlet prior on the path space of the chain, the states of the chain representing the environment due to the 

disasters. We model the loss claim using a Black-Scholes with jump and standard diffusion with drift, volatility 

and intensity depending on the state of the disasters. The state of the claim loss is modeled as a continuous time 

Markov chain with a Dirichlet prior. In what follows, the notations 
2  and 

2  will be both used to denote the 

variance rather than the standard deviations. 

The following notations will be adopted:   

    • n  will denote the number of observed data and also the length of an observed path.  

    • M  will denote the number of states of the Markov chain.  

    • The state space of the chain will be denoted by }.1:{= MiiS    

    • N  will denote the number of simulated paths.  

    • m  will denote the number of distinct states of a path.  

 

  

    • The IBNR claims and the IBENR claims follow respectively the following two SDE:  

 0,,),,(),,(=   tddBNXtdtNXt
N

dN
tttttt

t

t P  

  

 0.,),,,(),,,(=   tdBNDXtdtNDXtdD tttttttt   

 where tB  is a standard Brownian motion and tP  is a Poisson process with intensity  . By Ito’s formula, the 

process )(log= tt NZ  satisfies the SDE,  

 0,,)()(=  tddBXdtXdZ ttttt P  

where ).(.)(
2

1
)(=)( 2

tttt XXXX    The observed data are of the form .,,, 10 nZZZ    
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    • The process )( tX  is assumed to be a continuous time Markov process taking values in the set 

}.1:{= MiiS   The transition probabilities of this chain are denoted by ,ijp  Sji ,  and the transition 

rate matrix is SjiijqQ ,0 )(=  with  

 .,,=,=0,> Sjiqqandjiifpq ij

ij

iiijiiji  


  

Let us define the log-returns, )/(log== 11  ttttt NNZZY  for the equation (13) and 1=  ttt DDY  for 

the second equation (14), .,1,2,= nt   Suppose we know the path }.0,{= nsXX s   Let )(tT j  be the 

time spent by the path X  in state j  in the time interval ].1,[ tt   Define  

 );()(:=)();()(:=)( 2

1=

2

1=

tTjttTjt j

M

j

j

M

j

   (19) 

  

 ).()(:=)(
1=

tTjt j

M

j

   

 

 ).()(:=)();()(:=)( 2

1=

2

1=

tTjttTjt j

M

j

j

M

j

   (20) 

 Then, conditional on the path X , the solutions of the equations (13) and (14) are respectively given by :   

        - the solution of the first equation (13) is  

 

,)(12.5

})
2

)(
)(())(({=1

<0

2

00
0

s
sts

t

ss

t

t

ecm

ds
s

sddBsexpYcmY
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P
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 (21) 

  

 ,,2,1,= nt   

and,  

        - tY  are i.i.d. ),( tt N , nt ,2,1,=   for the second equation (14).  

 

 

    • For each ,,2,1,= Mi   the priors on )(= ii  , )(= ii  , )(= ii  , )(= ii   and 

)(= ii   are specified by  

 0,>),(0,),,(, AAwithii N:N:  
 (22) 

 ),,(, 21

22  :ii  (23) 

 ).,( 21 cci :  (24) 

  

    • The Markov chain 0},{ tX t  has prior ),( HD  where H  is a probability measure on the 

path space of cadlag functions ).),([0, SD   The initial distribution according to H  is the uniform 

distribution ),1/,,(1/=0 MM   and the transition rate matrix is Q  with 1)1/(= Mpij  and 

0>= i . Thus the Markov chain under Q  will spend an exponential time with mean 1/  in any state i  

and then jump to state ij   with probability 1).1/( M  

A realization of the Markov chain from the above prior is generated as follows: Generate a large 

number of paths }0:{= nsxX i

si  , ,,2,1,= Ni   from .H  Generate the vector of probabilities 
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),1,=,( Nipi   from a Poisson Dirichlet distribution with the parameter ,  using stick breaking. Then 

draw a realization of the Markov chain from  

 ,=
1=

i
Xi

N

i

pp   (25) 

 which is a probability measure on the path space ).),([0, SnD  The parameter   is chosen to be small so that 

the variance is large and hence we obtain a large variety of paths to sample from at a later stage. The prior for 

  is given by,  

 ).,( 21  :  (26) 

  

V. Estimation 

Estimation is made using the simulation of a large number of paths of the Markov chain which will be 

selected according to a probability vector (generated by stick-breaking) and then using the blocked Gibbs 

sampling technique. This technique uses the posterior distribution of the various parameters. 

We denote by ,   ,  , 
2  and 

2 , the current values of the vectors ),,,( 21 n  , 

),,,( 21 n  , ),,,( 21 n  , ),,,( 22

2

2

1 n   and ),,,( 22

2

2

1 n  , respectively. 

Let Y  be the vector of observed data ).,,( 1 nYY   Let ),,,(= 21 nxxxX   be the vector of current 

values of the states of the Markov chain at times ,,2,1,= nt   respectively. Let ),,(= **

1

*

mxxX   be the 

distinct values in .X  

 

5.1  Modifying the observed data set 

  In order to obtain the conditional distribution of the parameters, we first need to extract the change in 

the log-claims and the recourse increments between the jump times of the Markov chain. Let 

Jtttt <<<=0 210  be the times at which the path X  changes state. Define the log-claims and the 

recourse increments between the jump times, )/(log=
1k

t
k

tk NNW  and 
1

=



k

t
k

tk DDW  Jk ,1,2,=   

respectively. To obtain realizations of the kW  from the observed Y  process, we need to simulate Gaussian 

random variables conditioned on their sums. 

Consider any },{0,1, nt   for which the chain changes state at least once in the time interval 

].1,[ tt   Let 11 <<<<1<   pkpkkk tttttt  , be the jump times that lie in ],1,[ tt   for some 

1.p  Let )/(log= 1

1

t
k

tt NNV , 1

1 =ˆ
 t

k
tt DDV , 

pk
ttt DDV


=ˆ 2
 and )/(log=2

pk
ttt NNV


. Then 

the increment of the equations (13) and (14) respectively are  

 
2
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 Suppose for some that the chain X  is in state ij  in the time interval ),[ 1 ikik tt  , 1.,0,1,= pi   Set 

1,=0  tts k  1=   ikiki tts , ,,1,2,= pi   and .=1 pkp tts    

Let iij sjm )(=  , iij sjv )(= 2  and iij sjL )(=   1.,0,1,= pi   Remember that  
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 ,,2,1,= nt   

where )(),( 2 tt   and )(t  are as defined in (20). 

It is easy to see that the joint conditional density of ),,,( 1

1

pkkt WWV    given yYt =  is  
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 where 1C  is a constant that depends on y  and the parameters. Thus, one can simulate the variables 

pkkkt WWWV  ,,,, 1

1   from independent Gaussians and then obtain 
2

tV  using (27). 
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where 2C  is a constant that depends on y  and the parameters. Thus, one can simulate the variables 

pkkkt WWWV  ,,,,ˆ
1

1   from independent Gaussians and then obtain 
2ˆ

tV  using (28). 

Using the above procedure, we can obtain a realization for all kW  for which ],1,[],[ 1 tttt kk   for 

some },{0,1, nt  . Now for any k  for which there is a 0,q  such that 

1,<<<1<<1 1   qttqttttt kk   we can obtain kW  using the relations  

 
1

1

1=

2=   qtit

q

i

tk VYVW  (31) 
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 Note that the W  values depend on the path X  and need to be computed in each iteration. 

 

5.2  The Gibbs sampling procedure 

 We are now ready to estimate the posterior distributions of the parameters using Gibbs sampling. Each 

iteration produces one realization of the parameters from their approximate posterior distribution. Each iteration 

consists of a large number of samples obtained recursively for each parameter conditioned on the current values 

of the other parameters and the data.  

5.2.1  Estimation procedure of the IBNR claim parameters 

   

    •  Conditional for .   For each 
*Xj  let us draw 
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where the density of j  is calculated as follows: 
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Where ).,=,,,(= 22
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    •  Conditional for .X   
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subsection 5.1 for the path iX , .,1,= Ni    

 

    •  Conditional for .p   

 1,,3,2,=,)(1)(1=,= **

1

*

1

*

11   NkVVVpandVp kkk   (34) 

 where  

 ),,(1*  kk rV :  

 kr  equal 1 if ki =  and 0  else.  

    •  Conditional for  .  

   ,)(1log1,| *
1

1=

21 







 



i

N

i

VNp  :  

 where the 
*V  values are those obtained in the simulation of p  in the above step.  

    •  Conditional for  .   

   ),,(| **  N:  (35) 

 where  

 ,=
1=

*
*

j

M

j







   

and  

 .
1

=

1

*













A

M


  

 

5.2.2  Estimation procedure of the IBNER claim parameters 

 We are now ready to estimate the posterior distributions of the parameters using Gibbs sampling. Each 

iteration produces one realization of the parameters from their approximate posterior distribution. Each iteration 

consists of a large number of samples obtained recursively for each parameter conditioned on the current values 

of the other parameters and the data. 
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VI. Implementation 

The algorithm presented in the previous section was implemented in C language. The implementation 

includes  

- functions that simulate standard probability distributions Uniform, Normal, Gamma, Beta, 

Exponential. 

- a function that returns an index },{1, n  according to a vector of probability npp ,,1  .  

- a function that simulates a probability vector according to stick-breaking scheme. 

- a function that simulates n  paths of a Markov chain. 

- a function that records the number of times a state appears in a path. 

- a function that chooses one of the paths according to a vector of probability. 

- a function that modifies the parameters of prior distributions according to the formulas of the 

posteriori distributions. 

After having simulated a number of paths, we perform the iterations. At each iteration a path is 

randomly selected and the parameters are updated according to posteriori formulas. At the end of each iteration 

of the Gibbs sampling, we obtain a path X  of the Markov chain. From this, the parameters   and 0Q  can be 

re-estimated. From 0Q  the parameters i  and ijp  can be derived. 

 

6.1  Reinsurance data of the B.E.S.T.R.É company  

 We have also applied our algorithm to the reinsurance data of the B.E.S.T.R.É company from 

21/12/2006 to 15/11/2007. For this dataset of Incurred But Not Enough Reported claims reserve ijD . We 

have, 250=n , 1=t , and we deal with 100=N  paths while Gamma( 42, ) is the prior for .  

With the above choice, we obtain four regimes for which the estimates for the mean, variance and 

stationary probabilities are as follows:  

  

   R 1   R 2   R 3   R 4  
    -740.4  1110.6  10612.4  -1727.6 

    5.9   7.2166   12.3023   4.3800  
    43 %    13 %    10 %    34 %   

 

The parameters i s and the matrix of transition probability jijijip ,64,1,=,, )(   of the most frequent 

Markov chain path are respectively equal to: 

  

 1    2    3    4   

.5   1.2   1   1.12  

 

 























0.30.3250.375

0.540.20.26

0.350.610.04

0.470.030.5

  

 

On the other hand, for the dataset of Incurred But Not Reported claims reserve ijN . We have, 

250=n , 1=t , and we deal with 100=N  paths while Gamma( 42, ) is the prior for .  

With the above choice, we obtain six regimes for which the estimates for the mean, variance and 

stationary probabilities are as follows: 
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  R 1   R 2   R 3   R 4   R 5   R 6  
    9225   35254   863.2  285421   13254.2  22581 

    9.132   7.2166   2.3023   7.3800   1.186   3.3372 e-05  
    20 %    3 %    29 %    5 %    10 %    33 %   

 

The most frequent Markov chain path, its parameters i s and the matrix of the transition probability 

jijijip ,6,1,=,, )(   are respectively equal to: 

 

3 5 3 6 3 6 3 6 1 6 5 1 3 6 3 5 3 3 6 6 5 6 3 6 1 1 4 1 6 1 3 3 6 6 6 3 1 3 3 3 6 3 3 3 4 5 6 6 6 6 4 6 1 1 1 

6 6 6 6 6 1 3 3 3 1 6 1 3 3 5 6 3 3 1 6 5 4 1 3 6 4 6 3 3 5 6 3 6 2 3 6 1 3 3 6 1 6 6 5 5 1 1 5 3 5 3 3 6 1 6 5 6 1 6 6 

3 1 6 3 1 1 6 2 3 6 6 6 3 3 2 6 6 6 1 3 3 6 6 3 1 3 6 6 1 6 6 1 1 6 1 5 3 5 1 3 5 3 4 1 3 3 5 3 1 3 6 6 6 1 3 5 6 5 3 3 

6 3 6 1 3 5 6 6 6 5 1 6 3 3 1 1 6 6 6 3 6 1 3 6 3 6 6 6 6 6 3 6 3 6 6 4 6 3 6 1 1 6 4 6 1 3 4 3 6. 

 

 1    2    3    4    5    6   

.25   1   1.42   1   1.05   1.73  

 

 





























0.1340.0770.3840.0380.36

0.360.0520.4200.157

0.50.125000.375

0.540.20.0620.020.16

0.33000.660

0.420.060.030.480
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VII. Conclusion 
A Bayesian approach to estimation for a regime switching geometric Brownian motion is proposed. The 

algorithm while being computationally intensive is able to segregate the different regimes based on the drift and 

volatility, thus giving useful insights into the behavior of the sinister. It has been observed empiricaly that 

sinisters fluctuate between periods of high, moderate and low volatilities. The above estimation procedure 

provides a clear quantitative picture of the number of regimes and an estimate of the drifts and volatilities in 

these regimes. Estimation of current sinister state is also easier using the algorithm proposed compared to 

models using continuous stochastic volatility models. Given an estimate of the regime, the algorithm also gives 

an idea of likely duration for which the regime is likely to persist and the distribution of the regimes that may 

follow.  
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